Multiresolution scheme for Time-Dependent Schrödinger Equation
نویسندگان
چکیده
Article history: Received 3 November 2009 Accepted 21 November 2009 Available online xxxx
منابع مشابه
A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملHigh-order symplectic FDTD scheme for solving a time-dependent Schrödinger equation
Using the three-order symplectic integrators and fourth-order collocated spatial differences, a highorder symplectic finite-difference time-domain (SFDTD) scheme is proposed to solve the time-dependent Schrödinger equation. First, the high-order symplectic framework for discretizing a Schrödinger equation is described. Then the numerical stability and dispersion analyses are provided for the FD...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملHigh-Order Symplectic FDTD Scheme for Solving Time-Dependent Schrödinger Equation
Using the three-order symplectic integrators and fourth-order collocated spatial differences, a high-order symplectic finite-difference time-domain (SFDTD) scheme is proposed to solve the time-dependent Schrödinger equation. First, the high-order symplectic framework for discretizing Schrödinger equation is described. Then the numerical stability and dispersion analyses are provided for the FDT...
متن کاملNew, Highly Accurate Propagator for the Linear and Nonlinear Schrödinger Equation
A propagation method for the time dependent Schrödinger equation was studied leading to a general scheme of solving ode type equations. Standard space discretization of time-dependent pde’s usually results in system of ode’s of the form ut −Gu= s (0.1) where G is a operator (matrix) and u is a time-dependent solution vector. Highly accurate methods, based on polynomial approximation of a modifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 181 شماره
صفحات -
تاریخ انتشار 2010